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Abstract
We show that lattice Boltzmann simulations can be used to model
the attenuation-driven acoustic streaming produced by a travelling wave.
Comparisons are made to analytical results and to the streaming pattern
produced by an imposed body force approximating the Reynolds stresses.
We predict the streaming patterns around a porous material in an attenuating
acoustic field.

PACS numbers: 43.25.Nm, 43.35.+d, 62.60.+v, 05.50.+q

1. Introduction

Acoustic streaming describes a steady flow field superimposed upon the oscillatory motion of
a sound wave propagating in a fluid. It is a non-linear effect which occurs due to the presence
of boundaries or because of damping of the wave [1, 2].

Acoustic streaming velocities are normally small compared to the velocity of the
oscillatory fluid motion (<∼10%). However, there are reports that it can enhance rate-
limited processes such as diffusion [3, 4], heat transfer [1], the rate of sonochemical reactions
[5] and mixing [6]. It can also have important and possibly undesirable effects in the study
of acoustic levitation and the operation of theomoacoustic systems [7, 8]. The reasons
behind this behaviour are unclear, and to understand and control the effects, it is important to
better characterize the flow fields produced by acoustic streaming. For a few simple systems
streaming velocities have been determined analytically. However, for more complex systems,
analytical solutions will prove too difficult, so modelling methodologies need to be found. The
aim of this paper is to describe one such approach, a lattice Boltzmann simulation, which can
predict the acoustic streaming patterns from a direct solution of the Navier–Stokes equations.

There are two basic types of acoustic streaming. The first, Rayleigh streaming, is caused
by relative oscillatory motion between the fluid and a boundary. The steady flow results
from the rapid changes in the wave amplitude in the acoustic boundary layer. The effects
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of attenuation on the primary wave, though present, are usually considered to be negligible.
The second, Eckart streaming or quartz wind, results from the attenuation of the wave in the
bulk fluid. Any boundary effects are neglected. Here momentum transfer from the wave is
converted into a steady flow moving away from the source. Eckart streaming is often seen
with quartz transducer systems such as ultrasonic probes.

Acoustic streaming was first considered analytically by Rayleigh in 1884 [9]. He predicted
the streaming pattern for a standing wave between two parallel plates. More recently, Nyborg
[1] corrected this solution and presented results for streaming caused by a travelling wave
between two plates and for streaming around an infinitely long cylinder. Both of these studies
were restricted to the case where the amplitude of the acoustic wave is very small. In 1978,
Lighthill [2] published a further review of acoustic streaming in which he pointed out the
necessity of including additional terms in the streaming equations for a more intense acoustic
field. This included an approximate solution for higher amplitude turbulent streaming due to
bulk attenuation, which he termed Stuart streaming.

To date there have been a small number of studies modelling acoustic streaming.
Nightingale et al [10] used a standard computational fluid dynamics package to predict flow
in breast cysts caused by Eckart streaming. The authors used the analogy between streaming
and slow viscous flow to model the streaming as a flow produced by a body force which was
calculated from the time-dependent first-order wave. This requires the wave profile to be known
throughout the area of interest and assumes that there is no difference between the Lagrangian
and Eulerian streaming velocities. Loh et al [11] used an incompressible computational
fluid dynamics model to simulate streaming produced by ultrasonic flexural vibrations. This
modelled acoustic streaming by producing the rotational incompressible boundary solution
responsible for creating streaming [1] through oscillatory boundary conditions. However, as
the simulation was truly incompressible no sound wave was present.

Stansell and Greated [12] used a lattice gas approach to model the acoustic streaming
produced by a standing wave between two parallel plates. This is a simulation of the full
Navier–Stokes equations of motion, and the acoustic streaming appears as a small correction
to the oscillatory flow field. However, lattice gas simulations are inherently very noisy, and
streaming could only be seen for high amplitudes and viscosities.

Recently Haydock and Yeomans [13] used a lattice Boltzmann algorithm to model acoustic
streaming produced by the interaction of an acoustic wave with a boundary. Like the lattice
gas approach, this is a simulation of the full Navier–Stokes equations, but it does not suffer
from the same problems of noise. Here we demonstrate that lattice Boltzmann simulations
can also be used to predict the velocity profiles due to the Eckart streaming produced by
an attenuating wave. Hence, the lattice Boltzmann approach provides a method to obtain
streaming patterns for complicated systems, where analytical investigations are not possible,
and where boundary-driven and attenuation-driven streaming can coexist.

The next section of the paper introduces the lattice Boltzmann approach. In section 3,
we compare the simulation results for attenuation-driven streaming in a pipe to the Nybourg
solution and to streaming imposed by an imposed body force. Section 4 shows how it is
possible to model acoustic streaming velocity profiles in the presence of a complex porous
object.

2. The lattice Boltzmann algorithm

The lattice Boltzmann model we use is the single-relaxation-time Bhatnagar–Gross–Krook
(BGK) scheme on a two-dimensional square lattice [14]. Lattice vectors are
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Figure 1. Numbering of lattice vectors in the lattice Boltzmann model.
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together with a zero velocity vector e0 = (0, 0) as shown in figure 1. A set of partial densities,
fi(x, t) associated with each lattice direction i are defined on each lattice site x. These are
related to the physical variables, density ρ(x, t) and velocity u(x, t) by

∑

i

fi(x, t) = ρ(x, t)
∑

i

fi(x, t)ei = ρ(x, t)u(x, t). (1)

The partial densities evolve with time t according to
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τ

(
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i

)
(2)

where the local equilibrium distributions are

f 0
i = ρwi
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2u2} i = 1, 2, . . . , 8 (3)

with w1 = w3 = w5 = w7 = 1/9 and w2 = w4 = w6 = w8 = 1/36 and

f 0
0 = ρ

{
4
9 − 2

3u2}. (4)

In equation (2), the left-hand side corresponds to the propagation step, where momentum
is transferred, and the right-hand side represents the relaxation process which determines the
viscous properties of the fluid. In the continuum limit, a Chapman–Enskog expansion of the
numerical scheme reproduces the Navier–Stokes equations [14]

∂tρ + ∂αρuα = 0 (5)

∂tρuβ + uβ∂αρuα + ρuα∂αuβ = −∂βP + ρν∂α[∂βuα + ∂αuβ] (6)

with pressure P = ρ/3, kinematic viscosity ν = (2τ − 1)/6 and speed of sound c0 = 1/
√

3.

3. Results for attenuation-driven streaming in a pipe

3.1. One-dimensional waves

Consider a two-dimensional container 0 � x � Lx, 0 � y � Ly , where the walls have the
same acoustic properties as the fluid. A plane acoustic wave of wavevector k = 2π/λ and
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Figure 2. Comparison of velocity variation for one-dimensional simulation with theory when there
is no time average velocity. Solid line: simulation, dashed line: theory, dotted line: theoretical
amplitude as the wave attenuates with distance.

frequency ω propagates in the positive x-direction. The wave propagates from a source at
x = 0 which produces a sinusoidal wave of velocity amplitude ux .

We first consider a system that is translationally invariant in the y-direction. For this
geometry no time-averaged flow is possible because there is no return path for the fluid.
Instead a pressure gradient builds up. This geometry allows us to check that the primary sound
wave in the simulation is behaving in the expected way.

For sufficiently large Lx that reflections from the end of the container can be ignored, the
theoretical velocity amplitude of the wave is

u1x(x, t) = U e−αx sin(wt − kx) (7)

where α is the attenuation coefficient per unit length. This leads to Reynolds stresses and a
resultant pressure gradient [1]

∂xP2 = Fx = −ρ0〈2u1x∂xu1x〉 = ρ0αU 2 e−2αx (8)

where 〈· · ·〉 denotes a time average.
To reproduce these results numerically using a lattice Boltzmann scheme, we chose a

relaxation time τ = 0.8 (ν = 0.1), wavelength λ = 50 and an unperturbed density ρ0 = 1.
These give an attenuation coefficient α = 2.71 × 10−3. A simulation length Lx = 5000
allowed significant attenuation of the beam and thus reduced reflections and Ly = 3 (for
programming convenience). Periodic boundary conditions were used at y = 0 and y = Ly

and no-slip conditions, produced by a standard bounce-back scheme, at x = 0 and x = Lx

[15].
The sound wave was generated by adding a sinusoidal pressure and momentum variation

f +
i = fi + δρ3wiei sin(ωt) i = 1, 2, 8 (9)

at x = 0 for all y. To reduce reflections an absorbing boundary condition

f +
i = fi − δρ3wiei e−αx sin(ωt − kx) i = 4, 5, 6 (10)

was added at x = Lx for all y. This gives a sound wave with density amplitude δρ = 0.01 and
velocity amplitude U = δρc = 0.0058 at x = 0.
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Figure 3. (a) Second-order pressure gradient for a one-dimensional simulation with no time
average velocity. Solid line: simulation, dashed line: theory. (b) Difference in between the lattice
Boltzmann simulation and theory for the second-order pressure gradient.

Figure 2 shows the velocity variation in the wave as a function of x, the distance from
the source. The simulation waveform cannot be distinguished from the theoretical linear
waveform. This demonstrates that there are no significant reflections from x = Lx , and
that the wave is not developing significant time dependent non-linearities. Figures 3(a)
and (b) show the second-order pressure gradient ∂xP2 and the difference between the
theoretical prediction and the simulation, respectively. Again there is good agreement with the
theory.

3.2. Streaming in a channel

When the sound field does not completely fill the channel recirculatory flow is possible. This
allows the force due to the Reynolds stresses to produce a time-averaged steady flow known as
Eckart streaming. We simulate this geometry and compare our results to an analytic solution
due to Nyborg [1] and to the streaming obtained by imposing an appropriate body force.
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Nyborg [1] considered a channel where the first-order velocity is given by (7) for
0 � y � ls , where 2ls is the dimension of the sound source and is zero for ls < y � Ly . He
found a streaming velocity

u2 = αU 2

2ν

{(
2Lyy − y2 − l2

s

)
+ [2 − 3(ls/Ly)

2 + (ls/Ly)
3]y(y − Ly)/2

}
. (11)

The solution assumes a perfectly collimated beam, no reflections and weak attenuation of the
wave. It also assumes a low intensity beam so that no higher harmonics are produced in the
wave and small gradients in the streaming velocity, so the equation

µ∂2
xu2x − ∂xP2 = −Fx = 2ρ0〈u1x∂xu1x〉 (12)

can be used. This is a difficult limit to achieve numerically because weak attenuation implies
unwanted reflections at x = Lx or a simulation prohibitively expensive in computational
resources. Therefore, we also compare our simulation to one in which streaming is produced
using an imposed ‘body force’ due to the Reynolds stresses [1, 10]

Fx = ρ0αU 2 (13)

as in Nightingale et al [10].
The parameters used in the lattice Boltzmann simulation were τ = 0.8, λ = 50 and ρ0 = 1

as in section 3.1. The size of the simulation domain was Lx = 2000, Ly = 400. No-slip
boundary conditions were applied at x = 0, x = Lx and y = Ly . Slip boundary conditions
at y = 0 allowed us to exploit reflectional symmetry and simulate a system −Ly � y � Ly .
A sound wave was generated at the centre of the system by applying the sinusoidal variation
(9) for x = 0, 0 � y � ls . Absorbing boundary conditions (10) were applied at x = Lx ,
0 � y � ls . We took ls = 200 to provide a sufficient length relative to the wavelength to
produce a collimated field. To determine the streaming velocities, we allowed 3000 wave
cycles for the simulation to reach a steady state, then took the time average over 50 cycles.
This gave a run time of 31 h on a P4 2.5 GHz PC with 1 GB 800 MHz RDRAM.

Figure 4(a) shows the behaviour of the sound wave within the simulation box. Figure 4(b)
is a one-dimensional cross section at y = 100 comparing details of the waveform with the
primary wave used in the Nyborg theory. They show that the simulation wave is reasonably
well collimated but some energy is transferred from the primary wave into the y-direction
producing waves that are reflected from the boundary at y = Ly . Note that the simulation
produces a more physical transition from the collimated sound field to the surrounding fluid
than the theory.

Figure 5(a) shows the vector plot for the streaming velocity. Figure 5(b) compares the
streaming velocity u2x at x = 250 (the maximum of u2x) to that produced using the body
force predicted by (13) over all x, y < ls . There is good agreement between the full streaming
simulation and the simulation using the body force. The differences occur at the edge of the
beam where the body force imposes a perfectly collimated wave.

Figure 5(c) shows the velocity profile predicted for u2x by the analytical result (11). There
is an order of magnitude difference between the theoretical prediction and the two simulations.
We assumed that this is because the theory holds in the limit of zero attenuation, a limit that is
not accessible numerically. To check that it was possible to approach the theoretical limit, we
examined the effects of reducing the attenuation by running a simulation with Lx = 10 000,
Ly = 400 and τ = 0.55. We used 5000 time steps for the simulation to reach a steady state and
took the time average over 50 cycles. This gave a maximum streaming velocity u2x ∼ 2×10−3

which is approximately half that predicted by Nyborg. Thus a reduction in the attenuation does
indeed lead to results that approach the Nyborg solution. However, the simulation took 59 h
using 16 nodes of a IBM 1 GHz Linux cluster and any closer match to the Nyborg limit would
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(a)

(b)

Figure 4. (a) Density amplitude of the sound wave after 5050 cycles for the Lx = 2000, Ly = 400,
λ = 50, τ = 0.55 and ls = 200 simulation. For clarity only the first 1000 lattice points are shown
in the propagation direction. (Slip boundaries at y = 0 mean that this forms a plane of reflectional
symmetry.) (b) Comparison of the velocity variation at y = 100 for the Lx = 2000, Ly = 400,
λ = 50 and τ = 0.55 simulation after 5050 cycles with the theoretical wave. Solid line: simulation,
dashed lines: theory (7), dotted line: theoretical amplitude as the wave attenuates with distance.
Differences are due to reflections at Ly .

be computationally too expensive. In addition, as the viscosity is reduced, non-linearities
which are not included in the theory but are present in the simulation will become more
important.

To relate the non-dimensional lattice Boltzmann parameters u, x, t, ν, α and F to real
world parameters u′, x ′, t ′, ν ′,D′ and F ′, we use a characteristic velocity V and length L of the
real system as follows: u′ = V u, x ′ = Lx, t ′ = (L/V )t , ν ′ = V Lν, α′ = L−1α, F ′(ρV 2/L)F

and V = c′
0/c0. If we consider a wave propagating in air assuming international standard

atmosphere properties at sea level [16] (c′
0 = 340 m s−1, ρ ′

0 = 1.2 kg m−3, ν ′ = 1.4 × 10−5)
and choosing ν = 0.0333 then V = 588.9 m s−1, and L = 2.377 × 10−7. The simulation
used to model streaming in a channel has real parameters f ′ = 28.6 MHz, L′

x = 475 µm, the
half space L′

y = 95 mm, the intensity of the wave I = 2.36 kW m−2, where I = 0.5ρ0c0U
2

[2], and each time step represents 0.4 ns.
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Figure 5. (a) Vector plot of the streaming velocity for the Lx = 2000, Ly = 400, λ = 50 and
τ = 0.55 simulation. (b) Streaming velocity at x = 250 for theLx = 2000, Ly = 400, λ = 50, τ =
0.55 simulation. Solid line: full streaming simulation, dotted line: streaming simulated by using
a body force. (c) Streaming velocity for parameters Lx = 2000, Ly = 400, λ = 50, α = 0.0027
(τ = 0.55) from the theory presented by Nyborg [1].

4. Streaming around and through a porous material

We have shown that lattice Boltzmann simulations can be used to model attenuation-driven
acoustic streaming and, in a previous paper [13], we showed that these simulations can also
model streaming produced by the interaction with boundaries. Therefore, we can hope to
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Figure 6. Porous material geometry.

(a)

(b)

Figure 7. (a) Density field from the simulation of streaming around the porous material. Slip
boundaries at y = 0 mean that this forms a plane of reflectional symmetry. (b) x velocity field
from the simulation of streaming around a porous material. Slip boundaries at y = 0 mean that
this forms a plane of reflectional symmetry.

predict the streaming patterns associated with objects placed in the acoustic field as long as
there is a large difference in acoustic impedance between the object and the fluid so that the
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Figure 8. Vector plot of the streaming field around the porous material.

(a)

(b)

Figure 9. (a) x component of Lagrangian streaming velocity through one of the channels of the
porous solid. (b) x component of Eularian streaming velocity through one of the channels of the
porous solid.
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boundary conditions may be modelled as no-slip. This is typical of many solids placed in a
vibrating fluid such as water or air.

As an example we consider a porous material consisting of nine parallel channels shown
in figure 6. (Again we display only the part of the simulation for y > 0: slip boundaries at
y = 0 mean that this forms a plane of reflection symmetry.) Here Lx = 800, Ly = 400,
λ = 50, τ = 0.6 (ν = 0.033) and ls = 200, and the solid dimensions are 199.5 � x < 375.5,
ly = 333/2, the channel widths lc = 20, with a pitch of 33. The initialization time was 1000
cycles and the streaming velocities were evaluated over the following 50 cycles.

Figure 7(a) shows the first-order density variation of the sound wave after 1050 cycles.
Figure 7(b) shows the first-order velocity field u1x after 1050 cycles. Figure 8 shows the
vector plot of the second-order streaming field after the simulation has reached equilibrium.
As expected both the acoustic field and the streaming velocities are relatively complex.
The presence of the material produces large reflections setting up a ‘standing wave’ at
0 < x < 199.5. This does not produce the classic streaming patterns associated with a
standing wave due to the lack of appropriate boundaries but rather produces Eckart streaming
due to the attenuation. The Reynolds stresses associated with this attenuation produce two
time-averaged vortices which form at each side of the material and join just above the material.

Within the channels there is a lower amplitude wave as some proportion of the wave
is transmitted through the material. As expected within the pores a Poiseuille flow is
produced. This is due to bulk attenuation and attenuation due to the material boundaries,
which will both contribute to acoustic streaming. Figure 9(a) shows the second-order
Lagrangian streaming velocity (time averaging the momentum), and figure 9(b) is the second-
order Eularian streaming velocity (averaging velocity only). Note that there is a significant
difference between the two methods of determining velocity. A simple time average of
the velocity (figure 9(b)) produces a flow that clearly does not conserve mass where the
Lagrangian evaluation does conserve mass except for the inclusion of a small quantity of noise
at second order.

5. Conclusions

In this paper we have shown that lattice Boltzmann simulations can be used to model
attenuation-driven acoustic streaming. The lattice Boltzmann approach solves the full Navier–
Stokes equations, so once boundary conditions are implemented that produce and correctly
constrain the wave, streaming is automatically generated. Thus the method is free from the
constraint of needing to determine the harmonic solution as a boundary condition for the
model.

We have also demonstrated that the lattice Boltzmann approach can be used to determine
the streaming patterns produced around a complex object placed in the acoustic field where the
object itself has a significant effect on the harmonic wave and hence the streaming produced.
Here, there can be a significant difference between the two methods of evaluating the time-
averaged velocity at a point and the time average mass flow.

These simulations will prove useful in understanding the acoustic enhancement of rate
limiting processes such as diffusion, heat transfer, sonochemical reactions or mixing. They
will also have application in predicting the flow in ultrasonically driven microfluidic devices.
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